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Abstract

The aim of this paper is to present a short introduction to supergeometry on pure odd super-
manifolds. (Pseudo)differential forms, Cartan calculus (DeRham differential, Lie derivative, inte-
rior product), metric, “inner” product, Killing’s vector fields, Hodge star operator, integral forms,
co-differential and connection on odd Riemannian supermanifolds are introduced. The electro-
dynamics and Einstein relativity with anti-commuting variables only are formulated modifying
the geometry beyond classical (even, bosonic) theories appropriately. Extension of these ideas to
general supermanifolds is straightforward.
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1. Introduction

Supergeometry is an interesting and fruitful branch of mathematics with a variety of
powerful applications in modern theoretical physics, in particular in SUSY, supergravity
and superstrings. From a purely mathematical point of view, supergeometry is natural ex-
tension of the ordinary differential geometry by Grassmann variables. Such anti-commuting
extensions represent an essential and inspiring feature of all supermathematics.

The first paper about supermathematics was the work of Martin[1], in which the classical
limit of a system with fermionic degrees of freedom was discussed. This theory, later called
pseudoclassical mechanics was independently developed in the middle of 1970s by Berezin
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and Marinov[2,3], Casalbuoni[4,5] and others. Since the Grassmann variables became
an invaluable tool in the description of fermions, and because their natural combination
with even (bosonic) degrees of freedom led at the beginning of 1970s to the discovery of
supersymmetry, it was a necessary to build a rigorous mathematical theory, which would
be able to describe both (even and odd) degrees of freedom. Systematical investigation in
this direction was initiated at the beginning of 1960s by Berezin[6,7], but the main goals of
the supermathematics were established during 1970s largely by the Russian mathematical
school led by Berezin. More details about supergeometry (and also about its chronology)
can be found in the review article[8], and in the famous Berezin book[9] which could be
indeed regarded as the Bible of supermathematics (see also references therein).

The aim of this paper is to present a very short introduction to supergeometry over pure
odd supermanifolds (Sections 2–4). Using supergeometrical methods, we explain the elec-
tromagnetism described only by anti-commuting coordinates (Section 5); such extravagant
theory is called with a grain of saltGrassmann electrodynamics. After the definition of
linear connection on pure odd Riemannian supermanifold we shall be able to reveal an odd
analogy of the resulting theory with the Einstein theory of relativity (Section 6). All this “odd
business” (in both meanings of the word “odd”) is based on classical geometrical analogy,
similarly as pseudoclassical mechanics developed by Martin, Berezin and Casalbuoni.

2. (Pseudo)differential forms

The (pseudo)differential forms on an arbitrary smooth (real)m|n-dimensional superman-
ifoldM was in general investigated in the framework which is applied below in[10].

We shall study the basic properties of the (pseudo)differential forms on a pure odd
(0|n-dimensional) real supermanifold, i.e. onR0|n. The oddn-dimensional Cartesian space
R0|n is covered byn global Grassmann coordinates(ξ1, . . . , ξn) and the superalgebra
of functionsF(R0|n) coincides with exterior (Z2-graded) algebra

∧
Rn = [∧

Rn
]
[0] ⊕[∧

Rn
]
[1] .

The tangent bundle ofR0|n is a supermanifoldT R0|n = R0|n ×R0|n with a set of global
anti-commuting coordinates(ξ1, . . . , ξn, σ1, . . . , σn) transforming under the transforma-
tion of coordinatesξα �→ Ξα(ξ) on the baseR0|n as

(ξα, σα) �→
(

Ξα(ξ), Σα(ξ, σ) = σβ ∂Ξα

∂ξβ

)
. (1)

The odd functionsΞα(ξ) in (1)guarantee that the parity of coordinates onT R0|n is preserved.
Throughout the paper, we use left derivatives with respect to Grassmann variables and
Einstein summation convention. The parity of any objectO (with respect to anti-commuting
variables) is denoted bỹO, and to distinguish Grassmann and ordinary variables we use
Greek letters for the former and Latin letters for the latter.

The odd tangent bundleΠT R0|n = R0|n × Rn is a supermanifold which is obtained
from T R0|n by changing the parity of the fiber variablesσα. The coordinate transfor-
mation on supermanifoldR0|n induces the corresponding transformation on odd tangent
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bundle:

(ξα, yα) �→
(

Ξα(ξ), Yα(ξ, y) = yβ ∂Ξα

∂ξβ

)
. (2)

It is well known (for more details see[11], but we hope that it will become clear from our
next explanation) that the superalgebra ofdifferential formsonR0|n can be identified with
Z2-graded algebra Pol(ΠT R0|n) = Pol(Rn)⊗∧

Rn of all polynomials with real coefficients
over supermanifoldΠT R0|n. There is one to one correspondence between the differentials
of Grassmann variables dξα (even quantities) and the even variablesyα covering fibers in
ΠT R0|n. Their natural generalization leads to the definition ofpseudodifferential forms
overR0|n, namely, the superalgebra of pseudodifferential forms is defined as theZ2-graded
algebraC∞(ΠT R0|n) = C∞(Rn)⊗∧

Rn.
The standard differential operations on forms, DeRham differential, Lie derivative and

interior product, are identified with special vector fields onΠT R0|n. To obtain their exact
forms we use the fruitful idea of Maxim Kontsevich, who pointed out (see[12]) that the odd
tangent bundle of arbitrarym|n-dimensional supermanifoldM is canonically isomorphic
to the supermanifold of all supermapsR0|1 →M. In our case

ΠT R0|n ≡ {supermaps :R0|1 → R0|n}. (3)

An arbitrary supermapΦ ∈ ΠT R0|n is expressed in coordinates (by using Taylor expansion
in θ) as

Φ : θ �→ ξα(Φ(θ)) = ξα + θyα.

It is clear that suchΦ is characterized byn odd andn even coordinates, which transform in
accordance with(2).

The supergroup Diff(R0|1) = {diffeomorphisms :R0|1 → R0|1; θ �→ θ′ = θa + β}
defines via its natural right action:

ΠT R0|n × Diff (R0|1) → ΠT R0|n, (Φ, g) �→ Φ ◦ g,

the left invariant (fundamental) vector fieldsE, Q onΠT R0|n. Their expression in coordi-
nates is very simple, namely

E = yα∂yα, Euler field (Ẽ = 0), (4)

Q = yα∂ξα, DeRham differential(Q̃ = 1). (5)

The Euler vector field “measures” the degree of homogeneity of (pseudo)differential forms
under the supergroup action, therefore the superalgebraC∞(ΠT R0|n) has also a natural
Z-graded structure (f ∈ [C∞(ΠT R0|n)](k) ⇔ Ef = kf =: deg(f)f ). A direct calculation
gives the (super)commutation relations in the Lie superalgebra diff(R0|1):

[E, E] = 0, [E, Q] = Q, [Q, Q] = 2Q2 = 0. (6)

Similarly, the supergroup Diff(R0|n) = {diffeomorphisms ofR0|n} acts on the odd tangent
bundleΠT R0|n:

Diff (R0|n)×ΠT R0|n → ΠT R0|n, (g, Φ) �→ g ◦Φ.



D. Kochan / Journal of Geometry and Physics 51 (2004) 196–210 199

Therefore, to any elementV = V(ξα)∂ξα = V α(ξ)∂ξα of the corresponding Lie superalgebra
diff (R0|n) = X(R0|n) = Der(F(R0|n)) we can assign unique vector fieldV↑ on ΠT R0|n.
A straightforward coordinate computation1 gives

V↑ = V(ξα)∂ξα + (−1)Ṽ Q(V(ξα))∂yα ⇒ Ṽ↑ = Ṽ . (7)

Apart from this natural lifting construction, it is also possible to associate to anyV ∈ X(R0|n)

certain vector fieldV↑ onΠT R0|n such thatṼ↑ = Ṽ + 1 and

[V↑, Q] = V↑. (8)

Obviously, the coordinate expression forV↑ is

V↑ = V(ξα)∂yα . (9)

For any vector fieldsV, W ∈ X(R0|n) it is easy to confirm the validity of supercommutations
relations:

[E, V↑] = 0, [E, V↑] = −V↑, [V↑, Q] = 0,

[V↑, W↑] = [V, W ]↑, [V↑, W↑] = 0, [V↑, W↑] = [V, W ]↑. (10)

The vector fieldV↑ corresponds to theLie derivativeLV (with respect toV ) acting on
forms, whereasV↑ represents theinterior productiV (with V ). Eq. (8)is the famousCartan
formula.

An arbitrary (pseudo)differential form is a polynomial (function) on the supermanifold
ΠT R0|n and therefore it can be expressed in any coordinates as

f = f(ξ, y) =
n∑

β=0

∑
α1,... ,αβ

fα1,... ,αβ
(y) ∧ ξα1 ∧ · · · ∧ ξαβ , (11)

with ordinary real polynomials (functions)fα1,... ,αβ
(y), which are skew-symmetric in the

indicesα1, . . . , αβ.
Theintegralof the pseudodifferential formf overR0|n is defined as Berezin integral (for

more details see[9,11]) of a functionf onΠT R0|n:

I [f ] :=
∫

∧
Rn

dξ

∫
Rn

dyf(ξ, y). (12)

It is clear that such integral is not well defined for all elements of the superalgebras
Pol(ΠT R0|n) andC∞(ΠT R0|n), because the manifoldRn (the typical fiber inΠT R0|n)
is not compact. The berezinian of the transformation(2) is equal to unity, therefore the
integral(12) is coordinate independent; moreover, the oddper-partesintegration formula
(the oddStokes theorem) holds:

I [(Qf) ∧ g] = (−1)f̃+1I [f ∧ (Qg)] ⇔ I [Q(f ∧ g)] = 0. (13)

1 In the case of an odd vector field (Ṽ = 1) it is necessary to consider instead of flow thesuperflow(homo-
morphism of the supergroupsR1|1 and Diff(R0|n)), whose infinitesimal (�t, �ε) action in the coordinates is:
ξα �→ ξα +�εV(ξα)+ (�t/2)[V, V ](ξα), �ε is odd variable.
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An arbitrary supermapΦ : R0|n → R0|m defines (in accordance with(2)) the supermap
Φ↑ : ΠT R0|n→ΠT R0|m. The corresponding superalgebra homomorphismΦ↑∗ : C∞
(ΠT R0|m) → C∞(ΠT R0|n) is thepull-backof the supermapΦ over (pseudo)differential
forms. For the vector fieldV ∈ X(R0|n), which generates the (super)flow (diffeomorphism)
on the supermanifoldR0|n, the general formula for thepull-backreads

f �→ f(t,ε) ≡ [Φ(t,ε)(V
↑)]∗f =

{
exp{tV↑}f for Ṽ = 0,

exp{εV↑ + 1
2t[V↑, V↑]}f for Ṽ = 1.

(14)

3. Metric and Killing’s vector fields

The metric may be introduced on an arbitrarym|n-dimensional smooth supermanifold
M (in particular, on an ordinary manifoldM) as an even regular (non-degenerate) quadratic
function in fiber variables on a tangent bundleTM. In our caseM = R0|n and themetric
has the form:

g = g(ξ, σ) = gαβ(ξ) ∧ σα ∧ σβ, (15)

where functionsgαβ(ξ) = −gβα(ξ) are even elements ofF(R0|n) (roughly speaking, com-
ponents of metric tensor in coordinates(ξ1, . . . , ξn)). The non-degeneracy condition reads

|g| := det(gαβ) �= 0. (16)

Let us emphasize that non-degeneracy ofg implies that the even skew-symmetric matrixgαβ

is invertible. Consequently, 0|n-dimensional supermanifoldR0|n can be Riemannian only if
n is even (this fact is strongly reminiscent of the situation in symplectic geometry), therefore
our next analysis will be performed only for pure odd, even-dimensional supermanifolds
R0|2n.

An arbitrary vector fieldV = V(ξα)∂ξα ∈ X(R0|2n) could be vertically lifted from
the base supermanifoldR0|2n to the tangent bundleT R0|2n: the coordinate expression for
vertically lifted vector field over the tangent bundle is very simple

V↑ver = V(ξα)∂σα ⇒ Ṽ↑ver = Ṽ . (17)

The metricg on the supermanifoldR0|2n allows us to define theinner productof vector
fields onR0|2n as follows:

(V, W)g := (−1)W̃+1V↑ver

[
W↑ver(

1
2g)

]
= V(ξα) ∧ gαβ(ξ) ∧W(ξβ). (18)

It is clear that for all vector fieldsV, W, U ∈ X(R0|2n) homogeneous with respect to parity
and arbitrary functionf ∈ F(R0|2n) the following relations are valid:

˜(V, W)g = Ṽ + W̃,

(V, W)g = −(−1)(Ṽ+1)(W̃+1)(W, V)g, odd graded skew-symmetry,

(V + fU, W)g = (V, W)g + f(U, W)g, gradedf -linearity,

(V, W + fU)g = (V, W)g + (−1)Ṽ f̃ f(V, U)g,

}
gradedf -linearity. (19)
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In the ordinary differential geometry, it is well known, that apart from the vertical lifting
procedure there also exists a canonical horizontal lift of vector field from the baseR0|2n to
the tangent bundleT R0|2n. An arbitrary even [odd] vector fieldV = V(ξα)∂ξα ∈ X(R0|2n)

induces an infinitesimal flow [superflow] on the base supermanifoldR0|2n. Such infinites-
imal diffeomorphism ofR0|2n, in accordance with(1), generates the (super)flow on the
tangent bundleT R0|2n. Its generator is the vector field:

V↑hor = V(ξα)∂ξα + [σβ∂ξβ(V(ξα))]∂σα ⇒ Ṽ↑hor = Ṽ . (20)

The origin of the horizontal lifted vector fieldV↑hor ∈ X(T R0|2n) is the same as the origin
of the vector fieldV↑ ∈ X(ΠT R0|2n), which acts asLie derivativeon the algebra of
(pseudo)differential forms.

Theconformal Killing’s vector fieldson the Riemannian supermanifoldR0|2n are solu-
tions of the system ofn(2n− 1) algebraic equations:

χ ∧ g = V↑hor(g) ⇔ χ ∧ gαβ = V µ(gαβ),µ + (−1)Ṽ [gαµ(V µ),β − gβµ(V µ),α],

(21)

whereχ ∈ F(R0|2n) is even conformal scaling function and(f),µ = ∂ξµ [f(ξ)]. It is evident
that the linear combination of two conformal Killing’s vector fields is again the conformal
Killing’s vector field, and because

[V, W ]↑hor = [V↑hor, W↑hor],

the supercommutator of two conformal Killing’s vector fields is a generator of conformal
transformation of the supermanifoldR0|2n, too.

It is possible to show that the Lie superalgebra of pure Killing vector fields (χ = 0) over
R0|2n is at a mostn(2n + 1)|2n-dimensional subsuperalgebra ofn22n|n22n-dimensional
Z2-graded algebraX(R0|2n). The proof is analogical as in the ordinary differential geometry,
but we do not prove this statement here, because it is not necessary for our next construction
and, moreover, it requires the definition of a new supergeometrical notion, namely, the
exponential (super)mapping.

Let us note that in analogy with ordinary differential geometry it is possible in supergeom-
etry to define objects, similarly as it was done with metric, which correspond (from ordinary
geometrical point of view) to covariant [contravariant] symmetric and anti-symmetric ten-
sors:covariant[contravariant] symmetric tensor fieldof rankk over an arbitrary smooth
supermanifoldM (in particular, on an ordinary manifoldM) is defined as the polynomial
function of degreek in fiber variables on the tangent [cotangent] bundleTM [T ∗M].

Anti-symmetric covariant[contravariant] tensors(differential forms [multivector fields])
are analogically encoded in the polynomials in fiber variables on the odd tangent [odd
cotangent] bundleΠTM [ΠT ∗M]. More detailed (but not exhaustive) description of the
tensorial supercalculus on smooth supermanifolds may be found, e.g. in[9,11,13].
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4. Hodge∗g,o operator, integral forms and co-differential

As in the case of ordinary differential forms, the metric is an essential ingredient in the
definition of Hodge∗g,o. Because now we are familiar with all its relevant ingredients, we
are able to define this operator.

For the functionf = f(ξ, y) ∈ [C∞(ΠT R0|2n)](k) ((pseudo)differential forms over
R0|2n) the Hodge∗g,o operator is formally defined by its Fourier transform in the fiber
variablesyα, namely

(∗g,of)(ξ, y) := (ı)f̂

(2π)n

∫
R2n

dz(o
√
|g|) ∧ f(ξ, z) ∧ exp{−ızαgαβyβ}, (22)

where the symbol̂f denotes the parity with respect to even variables, i.e.f̂ = k|mod 2
and the orientationo = ±1 (because the square root of|g| is uniquely defined up to sign).
In what follows, to simplify notation, we will puto = 1 and subscripto will be omitted. It
is clear that the Hodge∗g operator is defined on elements from Pol(ΠT R0|2n) only in sense
of distributions. Such generalized functions with one point support on the supermanifold
ΠT R0|2n are calledintegral formsover the odd tangent bundle and we denote them as
∗(Pol(ΠT R0|2n)). A straightforward calculation shows that the definition of the Hodge star
operator does not dependent on the choice of coordinates. The definition(22) is strictly
correct only for functions fromC∞(ΠT R0|2n) that are behaving well in the variablesyα

at infinity (e.g. functions with compact support). The basic properties of the Hodge star
operator can be obtained from the definition(22):

∗̂gf = f̂ , ∗̃gf = f̃ , Q̂(∗gf)= f̂ + 1, Q̃(∗gf)= f̃ + 1, ∗g(∗gf)= (−1)f̂ f.

Similarly, like in the standard differential geometry, the metricg and the DeRham differential
Q define a new operatorδg acting on (pseudo)differential forms. This operator, called
co-differentialis defined by equation:

Q(h) ∧ ∗gf −Q(h ∧ ∗gf) =: (−1)h̃h ∧ ∗g(δgf), (23)

where functionsh, f ∈ C∞(ΠT R0|2n) are homogenous elements with respect to Grass-
mann and fiber variables, respectively. From this definition it follows:

δg(f) = (−1)f̂ ∗g Q ∗g f =
[

∂

∂ξα
− ∂ ln

√|g|
∂ξα

− yµ ∂gµν

∂ξα
gνλ ∂

∂yλ

]
gαβ ∂f

∂yβ
, (24)

wheregαµ(ξ) is inverse to the matrixgµβ(ξ), i.e.gαµ(ξ) ∧ gµβ(ξ) = δα
β. All basic proper-

ties of the co-differential on Riemannian supermanifoldR0|2n are given byEq. (24), and
may be deduced from the properties of Hodge star operator and DeRham differential. It is
immediately evident from(22) and (24)that for arbitrary (pseudo)differential formf and
any supermapΦ : R0|2n → R0|2m it holds

Φ↑
∗
[∗gf ] = ∗(Φ∗g)(Φ

↑∗f) and Φ↑
∗
[δg(f)] = δ(Φ∗g)(Φ

↑∗f), (25)

whereΦ∗g denotes thepull-backof the metricg (function over the tangent bundle) with
respect to supermap dΦ (differential of the supermapΦ).
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The “inner product” of (pseudo)differential forms overR0|2n is a necessary tool for
building a “reasonable” physical theory on such supermanifold. Iff, h are homogenous
elements with respect to Grassmann variables from the superspace [C∞(ΠT R0|2n)](k),
then their “inner product” is defined by

〈f, h〉g := I [f ∧ ∗gh]. (26)

It is clear that the “inner product”〈., .〉g is R-linear and, moreover,

〈f, h〉g = (−1)k〈h, f 〉g(−1)f̃ h̃,

0= 〈even inξ, odd inξ〉g,

〈Q(f), h〉g = (−1)f̃ 〈f, δg(h)〉g. (27)

Let us note that theLaplace–DeRhamoperator defined on (pseudo)differential forms by

�g := −(Qδg + δgQ) (28)

is self-adjoint with respect to the “inner product”(26). We use the name “inner product”
in quotation marks ex industria, to emphasize the peculiar fact that〈., .〉g, given by(26), is
not always non-degenerate (e.g. for the closed even 2-forms over supermanifoldR0|2 with
metricg = εαβ ∧ σα ∧ σβ it holds〈., .〉g ≡ 0).

5. Grassmann electrodynamics

The symplectic mechanics and classical electrodynamics are undoubtedly nice and simple
applications of differential geometry in classical physics. The Grassmann electrodynamics is
a natural “grassmannisation” of the well known version of ordinary even electrodynamics to
the odd one. The inspiration for such a bit extravagant theory is provided by Cartan calculus
on a pure odd Riemannian supermanifoldR0|2n and by the geometrical formulation of
classical electrodynamics (see e.g., interesting monographs[14,15], or the textbook[16]).

The electromagnetic field on the supermanifoldR0|2n (“Grassmann space-time”) is de-
scribed by thepotential1-form:

A = A(ξ, y) = Aα(ξ)yα ≡ Aα(ξ) dξα, whereAα(ξ) ∈
[∧

R2n
]

[1]
. (29)

Since the space of all odd potential 1-forms on the supermanifoldR0|2n is finite-dimensional,
dim([Pol(ΠT R0|2n)](1)

[1] ) = n22n, the “Grassmann electromagnetism” possesses only finite
number of degrees of freedom.

The closedelectrodynamics2-form:

F := Q(A) ∈ [Pol(ΠT R0|2n)](2)
[0] (30)

is invariant under thegauge transformations:

A �→ A′ = A+Q(f), where f ∈
[∧

R2n
]

[0]
. (31)
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Externals sources in such theory are described by thecurrent1-form:

J = J(ξ, y) = Jα(ξ)yα ≡ Jα(ξ) dξα, where Jα(ξ) ∈
[∧

R2n
]

[1]
. (32)

The dynamics of theGrassmann electromagnetic fieldis governed by the action:

S[A, J, g] := −1
2〈Q(A), Q(A)〉g + 〈J, A〉g, (33)

which is a functional (strictly speaking only a function, because the Grassmann electrody-
namics has finite number of degrees of freedom) of the potential and current 1-formsA and
J and also of the metric tensorg. Variation of the action(33)with respect to the potentialA

(without any boundary condition) leads (in the case when〈., .〉g is regular “inner product”
over the space of 1-forms) to the set of algebraicGrassmann—Maxwell equations, which
can be written in a compact form as

δgF = −J. (34)

The Grassmann—Maxwell equations are internally consistent only if the current 1-formJ

is co-closed, i.e. if

δgJ = 0⇔ Q(∗gJ) = 0. (35)

This is thecontinuity equationfor the external currents.
To bring this extravagancy to the top of its bent, we split coordinates covering “Grassmann

space-time”R0|2n = R0|(2n−1) ⊕ R0|1 to the “space” coordinates (ξ1, . . . , ξ2n−1) and the
“time” coordinate (ξ2n = τ). We restrict the closed integral form∗gJ ∈ ∗(Pol(ΠT R0|2n))

to the “space” hyper-surfaceR0|(2n−1). TheGrassmann chargerelated to external sources is
then defined as an integral of the restricted form(∗gJ)|ξ2n=τ,y2n=0 over “Grassmann space”

subsupermanifoldR0|(2n−1), namely

QGr(τ) :=
∫

∧
R2n−1

dξ

∫
R2n−1

dy(∗gJ)(ξ, y)

∣∣∣∣∣
ξ2n=τ,y2n=0

≡ ISp[(∗gJ)|ξ2n=τ,y2n=0].

(36)

The odd vector fieldT = ∂τ defines a corresponding “Grassmann time” evolution. It is clear
from Eqs. (7), (8) and (35)that

T(∗gJ) = T↑(∗gJ) = Q[T↑(∗gJ)] + T↑[Q(∗gJ)] = Q[T↑(∗gJ)].

Last equation and the oddStokes theorem(13) imply that

0= −ISp[Q(T↑(∗gJ)|ξ2n=τ,y2n=0)] = · · · = T(ISp[(∗gJ)|ξ2n=τ,y2n=0]) = ∂QGr

∂τ
.

(37)

Let us remark that similarly as in the ordinary electromagnetism, it is possible to fix gauge
freedom (of electromagnetic 2-formF ) by imposing the condition:

δgA = 0. (38)
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This Lorentz gauge conditiondoes not define the functionf in the gauge transformation
(31) uniquely. Let us note that this uncertainty in the choice of the gauge fixing function
f is similar as in the ordinary electrodynamics: to any solution of the Poisson equation
�gf = δgA, which determinesf , it is always possible to add a solution of the homogeneous
(Laplace) equation. To eliminate this ambiguity in the ordinary electromagnetism (gαβ =
ηαβ, i.e. in(3+ 1)-Minkowski space-time), we need to fix the boundary conditions for the
gauge fixing functionf (usuallyf(x) → 0 for x →∞), because then the Poisson equation
�ηf = δηA has unique solution2.

Unfortunately, this does not work in the case of the Grassmann electrodynamics, where the
boundary condition could be most naturally established by requirement that 0= f(ξ)|ξ=0
(the absolute term inf does not contribute to gauge transformation(31)). The problem
consists in an unpleasant fact that theLaplace–DeRham operatorrestricted to the functions:3

�gf = δgQ(f) = ∂

∂ξα
gαβ ∂f

∂ξβ
− ∂ ln

√|g|
∂ξα

gαβ ∂f

∂ξβ
(39)

is not invertible. This peculiar fact has a serious consequence: it is not possible to quantize
the Grassmann—Maxwell theory by using Faddeev–Popov method in a straightforward
way, because after applying gauge fixing condition(38) there still remains relative “rich”
gauge freedom, which is represented by the subgroup Ker�g. Similar problems arise also
with another gauge fixing conditions, e.g.ξµAµ(ξ) = 0 (radial gauge) or A2n(ξ) = 0
(Hamiltonian gauge) and therefore the problem of the quantization will not be discussed
in this paper. The reason is down-to-earth, needs an individual approach from the case to
case.

The Grassmann—Maxwellequations (34)could be rewritten in Lorentz gauge(38) in
the form:

�gA = J. (40)

Now, let us consider the case of a free electromagnetic field (J ≡ 0). The variation of the
action(33)with respect to the metricg

S[A, g+�th] = S[A, g] −�t

∫
∧
R2n

dξ√|g|
1

2
hαβ(ξ)T αβ(ξ)+ o(�t), (41)

where�th is the perturbation of metric (�t is an infinitesimal real parameter) anddξ
√
|g−1|

is invariant Berezin integral measure, defines the covariant tensor field (a quadratic function
in the fiber variables of the tangent bundle):

T = T(ξ, σ) = Tαβ(ξ) ∧ σα ∧ σβ, where Tαβ := gαµgβνT µν. (42)

It is theenergy-momentum tensorof the free Grassmann electromagnetic field. It is clear
from definitionequation (41)that in the energy-momentum tensorT only the skew-symmetric

2 Let us note that this statement is not true for the general Riemannian manifold(M, g), since the solution of
the Poisson equation in particular physical situations constitutes a serious problem of mathematical physics.

3 Sometimes called as theLaplace–Beltrami operator.
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part is uniquely fixed (contrary to standard electrodynamics, where the same is true of the
symmetric part). Namely,

Tαβ = −1

2

∫
R2n

∫
R2n

dy dz

(2π)n
|g|{gαβ + ı(zαyβ − zβyα)}{F(ξ, y) ∧ F(ξ, z)}e−ızµgµνyν

,

wherezα = gαµzµ andyβ = gβνyν.
The energy-momentum tensor is a fundamental physical object that enables us to con-

struct preserving quantities, which correspond to the space-time symmetries associated with
(conformal) Killing’s vector fields. Our next steps will be more general and final results
could be automatically applied to Grassmann electrodynamics discussed above.

Consider now an arbitrary fieldψ (function, 1-form, tensor field, etc.) over the superman-
ifold R0|2n with fixed metricg. Let us assume that the dynamics of the fieldψ is governed
by the action:

S[ψ, g] =
∫

∧
R2n

dξ√|g| [L(ψ, g)](ξ), (43)

which is natural with respect to diffeomorphisms, i.e.

Φ∗(L(ψ, g)) = L(Φ∗(ψ), Φ∗(g)) (44)

for anyΦ ∈ Diff (R0|2n). If V ∈ X(R0|2n) is an arbitrary even vector field,V defines the
infinitesimal flowΦ�t(V) on the Riemannian supermanifoldR0|2n. The associated horizon-
tally lifted even vector fieldsV↑, V↑hor, . . . generate the corresponding flowsΦ�t(V

↑... )

over supermanifoldsΠT R0|2n, T R0|2n, . . . and consequently thepull-backsΦ∗�t(V
↑... ) over

forms, symmetric covariant tensors fields and so on. Since the berezinians of all such lifted
flow-transformations are identically equal to unity and because the action(43) is natural
with respect to supergroup Diff(R0|2n), we could write

S[ψ, g] = S[Φ∗�t(V
↑... )(ψ), Φ∗�t(V

↑hor)(g)]

= S[ψ +�tV↑... (ψ)+ o(�t), g+�tV↑hor(g)+ o(�t)].

If the fieldψ is the solution of the dynamical equations, i.e.δS/δψ = 0, previous equation
implies that

0=
∫

∧
R2n

dξ√|g|
1

2
(V↑horg)αβT αβ, where T αβ(ξ) = −2

√
|g|δS[ψ, g]

δgαβ(ξ)
. (45)

Explicit coordinate expression(20) for the horizontal liftV↑hor (V is even) allows us to
write

1

2
(V↑horg)αβT αβ = V µ

[
1

2

(gαβ),µT αβ

√|g| −
(

gµαT αβ

√|g|
)

,β

]
−

(
V µgµαT αβ

√|g|
)

,β

. (46)

SinceEq. (45)is valid for all even vector fieldsV ∈ X(R0|2n) (componentsV µ(ξ) = V(ξµ)

are odd functions and
∫

dξ( ),β ≡ 0), we conclude that

ψ satisfies
δS

δψ
= 0⇒ 1

2

(gαβ),µT αβ

√|g| −
(

gµαT αβ

√|g|
)

,β

≡ 0. (47)
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This equation is a compact formulation ofconservation laws, because from ordinary point
of view,Eq. (47)is equivalent to the statement that(T µβ);β = 0. Now, it becomes clear that
for an arbitrary Killing’s vector fieldV ∈ X(R0|2n) (the generator of an isometry ofR0|2n)
the 1-form:

TV = TV (ξ, y) := 1
2V↑ver(Tαβ(ξ) ∧ σα ∧ σβ)|σ �→y (48)

is co-closed, i.e.Q(∗gTV ) = 0 (occasionally we are using metric to raise and lower indices,
in order to make our final formulae more compact). If moreoverT

µ
µ = 0, the same is true

for the arbitrary conformal Killing’s vector field and therefore the quantity:

QV (τ) := ISp[(∗gTV )|ξ2n=τ,y2n=0] (49)

is an integral of motion (i.e.∂τ [QV (τ)] = 0) andTV is correspondingGrassmann-Noether
currentassociated to the (conformal) Killing’s vector fieldV ∈ X(R0|2n). The proof of this
assertion is the same as for theGrassmann chargeQGr discussed above.

6. Connection and Grassmann general relativity

In this section we shall try to uncover the Grassmann analogy of the Einstein’s theory of
general relativity. We shall derive equations, which will govern the dynamics of the metric on
the pure odd Riemannian supermanifold(R0|2n, g), but before this we are forced to establish
a necessary supermathematical tool, namely the linear connection. The inspiration for such
“monstrosity” comes from the standard general relativity (see e.g.[17,18]) and from the
supergeometry discussed above.

We start with the definition of thelinear connection(the quintessence of general relativity)
on functions and vector fields for the general (not necessary Riemannian) pure odd super-
manifolds. Connection (covariant derivative∇ with respect to vector fieldV ∈ X(R0|n))
over functionsF(R0|n) is trivial: we require (analogically as in the ordinary case) that
∇V f := Vf. Connection over vector fields is the operation:

∇ : (X(R0|n))2 → X(R0|n), (V, W) �→ ∇V W, (50)

which in addition for arbitrary vector fieldsV, W, U ∈ X(R0|n) and functionf ∈ F(R0|n)

(all this objects are considered here and below as homogenous elements with respect to
parity) satisfies:

∇̃V W = Ṽ + W̃,

∇V+fUW = ∇V W + f∇UW,

∇V (W + fU) = ∇V W + (Vf)U + (−1)Ṽ f̃ f∇V U. (51)

It is clear that the full information about connection∇ on supermanifoldR0|n is uniquely
encoded inton3 Christoffel symbols (odd functions)Γ γ

αβ := (∇∂
ξβ

∂ξα)(ξγ), i.e.Γ γ

αβ(ξ) are

components of the vector field∇∂
ξβ

∂ξα with respect to coordinates frame(ξ1, . . . , ξn). If
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ξα �→ Ξα(ξ), thenΓ ’s transform as

Γ
′γ
αβ =

∂Ξγ

∂ξλ

∂ξµ

∂Ξα

∂ξν

∂Ξβ
Γ λ

µν +
∂ξµ

∂Ξα

∂ξν

∂Ξβ

∂

∂ξµ

(
∂Ξγ

∂ξν

)
.

In the same spirit as in the case of ordinary connection, thetorsionassociated to connection
∇ is the (super)tensorial (i.e. graded skew-symmetric and gradedf -multilinear) operation
T∇ defined by

T∇ : (X(R0|n))2 → X(R0|n),

(V, W) �→ T∇(V, W) := ∇V W − (−1)Ṽ W̃∇W V − [V, W ]. (52)

Let us note thatT∇(∂ξα, ∂ξβ ) = (Γ
γ

αβ + Γ
γ

βα)∂ξγ = T∇(∂ξβ , ∂ξα) and therefore the torsion

vanishes identically only in the case, when the connection∇ on the supermanifoldR0|n is
anti-symmetric, i.e.Γ γ

αβ = −Γ
γ

βα.
The curvature tensorR∇ assigned to the connection∇ is naturally defined as the su-

permap:

R∇ : (X(R0|n))3 → X(R0|n),

(V, W, U) �→ R∇(V, W, U) := [∇V ,∇W ]U − ∇[V,W ]U, (53)

where [∇V ,∇W ] = ∇V∇W − (−1)Ṽ W̃∇W∇V . Obvious coordinate expression for the cur-
vature tensorR∇ is

R∇(∂ξµ, ∂ξν , ∂ξβ ) = Rα
βµν∂ξα = {(Γ α

βµ),ν + (Γ α
βν),µ − Γ λ

βµΓ α
λν − Γ λ

βνΓ α
λµ}∂ξα . (54)

Apart from the basic properties of the torsionT∇ and curvatureR∇ , which have arisen as
straightforward consequences of their definitions, one also obtains two useful and powerful
identities, namely theRicci identity:∑

cycl. permut.

(−1)Ṽ Ũ{R∇(V, W, U)− ∇V (T∇(W, U))− T∇(V, [W, U])} = 0 (55)

and theBianchi identity:∑
cycl. permut.

(−1)Ṽ Ũ{[∇V , R∇(W, U, ·)] + R∇(V, [W, U], ·)} = 0. (56)

The proof of these assertions is not difficult, it is mainly a technical matter, which needs
patience, large sheet of paper and knowledge about the (super)Jacobi identity stating that
(−1)Ṽ Ũ [V, [W, U]] + cycl. permut. = 0 for anyV, W, U ∈ X(R0|n).

On the odd Riemannian supermanifold(R0|2n, g) it is possible to require, analogically
as in the ordinary case, the compatibility between connection∇ and metricg, which means
that for arbitrary vector fieldsV, W, U onR0|2n it should holds

∇V (W, U)g = (∇V W, U)g + (−1)Ṽ (W̃+1)(W,∇V U)g. (57)
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As was mentioned above, the connection∇ can be uniquely defined by(2n)3 odd functions
(Γ ), compatibility condition(57)gives 2n2(2n−1)-secondary constrains on the Christoffel
symbols:

(gαβ),γ = gαµΓ
µ
βγ − gβµΓ µ

αγ .

But there still remains 2n2(2n+1)-degrees of freedom for the ChristoffelΓ ’s, the residual
ambiguity could be eliminated by requirement that connection∇ is without torsion (T∇ = 0)
or equivalently that∇ is anti-symmetric. The final expression for the Christoffel symbols
related to themetric and anti-symmetric connection∇ is very simple, and similar to the
ordinary one. Namely,

Γ
γ

αβ = 1
2gγµ[(gµα),β − (gµβ),α − (gαβ),µ] ≡ gγµΓµαβ. (58)

The pure metricity of the connection∇ (in principleT∇ �= 0) implies that

(R∇(V, W)X, Y)g = (−1)(X̃+1)(Ỹ+1)(R∇(V, W)Y, X)g, (59)

the last equation together with anti-symmetry of∇ reveal another interesting symmetry of
the supermapR∇ :

(R∇(V, W)X, Y)g(−1)Ỹ = (−1)(Ṽ+W̃)(X̃+Ỹ )(R∇(X, Y)V, W)g(−1)W̃ . (60)

The proof of these identities is very simple and it is primarily based on the fact that for any
functionf ∈ F(R0|2n) it holds [∇V ,∇W ]f −∇[V,W ]f = 0. The choicef = (X, Y)g gives
(59). The statement(60) is just a consequence of previous one together with Ricci identity
without torsion terms.

Henceforth, we work only with theGrassmann—Levi–Civita∇, which is torsionless and
compatible with metricg. In such case, it is evident that the curvature tensorR∇ over the
Riemannian supermanifold(R0|2n, g) has only(n2/3)[4n2− 1]+ n[4n2+ 1] independent
componentsRα

βµν, which is indeed more than in ordinary case for the same dimension.

Now we are able to describe the gravity onR0|2n. The free dynamics of the metricg is
governed by theGrassmann–Hilbert action:

SG−H [g] :=
∫

∧
R2n

dξ√|g|R, (61)

where theRicci scalarR is defined by

R := gβαRµ
αµβ = gβα{(Γ µ

αβ),µ + (Γ µ
αµ),β − Γ λ

αβΓ
µ
λµ − Γ λ

αµΓ
µ
λβ}. (62)

The first two terms in the action(61)can be simplified byper-partesintegration (
∫

dξ( ),µ ≡
0). After such treatment we obtain more convenient expression, namely

SG−H [g] =
∫

∧
R2n

dξ√|g|G, where G = gβα{Γ µ
αβΓ λ

µλ + Γ λ
αµΓ

µ
λβ}. (63)
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The variation of(63)with respect to the metricg (without any boundary conditions, foras-
much as the surface terms do not contribute) leads to the system of algebraic equations:

∂(
√
|g−1|G)
∂gαβ

− ∂

∂ξµ

[
∂(

√
|g−1|G)

∂(gαβ),µ

]
= 0, (64)

which dictates the evolution of the free gravitational field. It is always possible to add to
the Grassmann–Hilbertaction a mater term of the form(43), and then the variation of
SG−H [g] + Smater[ψ, g] with respect tog, gives theGrassmann–Einstein equations:

∂(
√
|g−1|G)
∂gαβ

− ∂

∂ξµ

[
∂(

√
|g−1|G)

∂(gαβ),µ

]
= 1

2

√
|g−1|T αβ, (65)

whereT αβ is the energy-momentum tensor(45) related with the mater fields.
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