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Abstract

The aim of this paper is to present a short introduction to supergeometry on pure odd super-
manifolds. (Pseudo)differential forms, Cartan calculus (DeRham differential, Lie derivative, inte-
rior product), metric, “inner” product, Killing’s vector fields, Hodge star operator, integral forms,
co-differential and connection on odd Riemannian supermanifolds are introduced. The electro-
dynamics and Einstein relativity with anti-commuting variables only are formulated modifying
the geometry beyond classical (even, bosonic) theories appropriately. Extension of these ideas to
general supermanifolds is straightforward.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Supergeometry is an interesting and fruitful branch of mathematics with a variety of
powerful applications in modern theoretical physics, in particular in SUSY, supergravity
and superstrings. From a purely mathematical point of view, supergeometry is natural ex-
tension of the ordinary differential geometry by Grassmann variables. Such anti-commuting
extensions represent an essential and inspiring feature of all supermathematics.

The first paper about supermathematics was the work of Maitim which the classical
limit of a system with fermionic degrees of freedom was discussed. This theory, later called
pseudoclassical mechanics was independently developed in the middle of 1970s by Berezin
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and Marinov[2,3], Casalbuoni4,5] and others. Since the Grassmann variables became
an invaluable tool in the description of fermions, and because their natural combination
with even (bosonic) degrees of freedom led at the beginning of 1970s to the discovery of
supersymmetry, it was a necessary to build a rigorous mathematical theory, which would
be able to describe both (even and odd) degrees of freedom. Systematical investigation in
this direction was initiated at the beginning of 1960s by Berg&,iri, but the main goals of

the supermathematics were established during 1970s largely by the Russian mathematical
school led by Berezin. More details about supergeometry (and also about its chronology)
can be found in the review artic[8], and in the famous Berezin bo@] which could be

indeed regarded as the Bible of supermathematics (see also references therein).

The aim of this paper is to present a very short introduction to supergeometry over pure
odd supermanifoldsSections 2-% Using supergeometrical methods, we explain the elec-
tromagnetism described only by anti-commuting coordingdestfon J; such extravagant
theory is called with a grain of satbrassmann electrodynamicAfter the definition of
linear connection on pure odd Riemannian supermanifold we shall be able to reveal an odd
analogy of the resulting theory with the Einstein theory of relativdg¢tion §. All this “odd
business” (in both meanings of the word “odd”) is based on classical geometrical analogy,
similarly as pseudoclassical mechanics developed by Martin, Berezin and Casalbuoni.

2. (Pseudo)differential forms

The (pseudo)differential forms on an arbitrary smooth (re&t}dimensional superman-
ifold 90t was in general investigated in the framework which is applied belddah

We shall study the basic properties of the (pseudo)differential forms on a pure odd
(O|n-dimensional) real supermanifold, i.e. B3”. The odd:-dimensional Cartesian space

RO is covered byn global Grassmann coordinatés, ... , £*) and the superalgebra
of functions F(R9") coincides with exteriorZ,-graded) algebra\ R" = [/\ R"][O] <)
[A Rn][l]-

The tangent bundle &°” is a supermanifold R = RO x RO with a set of global
anti-commuting coordinateg?, . .. , &, o1, ... , o") transforming under the transforma-
tion of coordinateg® — =% (€) on the bas®%" as

€ 0" > (590, 26 o) = o 22 ()
) — ) ) - agﬁ .

The odd function&™ (¢) in (1) guarantee that the parity of coordinateg@?" is preserved.
Throughout the paper, we use left derivatives with respect to Grassmann variables and
Einstein summation convention. The parity of any obj@¢tvith respect to anti-commuting
variables) is denoted bg, and to distinguish Grassmann and ordinary variables we use
Greek letters for the former and Latin letters for the latter.

The odd tangent bundIETRO" = RO” x R” is a supermanifold which is obtained
from TRO" by changing the parity of the fiber variable€. The coordinate transfor-
mation on supermanifol®%” induces the corresponding transformation on odd tangent
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bundle:
=%
E* y) - (E“(é), Y& y) = yﬂag_ﬁ> . 2

It is well known (for more details sdé 1], but we hope that it will become clear from our
next explanation) that the superalgebralifferential formson R9” can be identified with
Z»-graded algebra PalITRO") = Pol(R™)® A R" of all polynomials with real coefficients
over supermanifold77R%”. There is one to one correspondence between the differentials
of Grassmann variable€® (even quantities) and the even variabj&scovering fibers in
TR, Their natural generalization leads to the definitiorpetudodifferential forms
overRY" namely, the superalgebra of pseudodifferential forms is defined dstheaded
algebraC®(ITTRY") = C*(R") @ /\ R".

The standard differential operations on forms, DeRham differential, Lie derivative and
interior product, are identified with special vector fields/@AR%". To obtain their exact
forms we use the fruitful idea of Maxim Kontsevich, who pointed out (42§ that the odd
tangent bundle of arbitramy|n-dimensional supermanifolt is canonically isomorphic
to the supermanifold of all supermag8* — M1. In our case

nTRY" = {supermaps R%* — RO}, (3)

An arbitrary supermag € ITTRY" is expressed in coordinates (by using Taylor expansion
in ) as

@ 0> E4(D(O)) = E% + Oy~
Itis clear that sucl® is characterized by odd and: even coordinates, which transform in
accordance witlf2).

The supergroup DiffR%) = {diffeomorphisms :RO — ROL: 9 s ¢’ = 6a + B}

defines via its natural right action:

TR x Diff (RYY) — TR, (@,8)— Pog,
the left invariant (fundamental) vector fields Q on ITTRY". Their expression in coordi-
nates is very simple, namely

E =)%3,«, Eulerfield (E = 0), (4)
0 = y"3«, DeRham differential(Q = 1). (5)

The Euler vector field “measures” the degree of homogeneity of (pseudo)differential forms
under the supergroup action, therefore the superalget@77R%") has also a natural
Z-graded structuref{ € [C®(ITTRY")]® « Ef = kf =: deg f) f). A direct calculation
gives the (super)commutation relations in the Lie superalgebrérdif):

[E.E]=0, [E.Ql=0, [0.0]=20%=0. (6)

Similarly, the supergroup DitiR%") = {diffeomorphisms oR%"} acts on the odd tangent
bundle7TTRO":

Diff R2") x TR — ITRO", (g, P) > go @
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Therefore, to any elememt= V(£*)d:« = V*(§)dg of the corresponding Lie superalgebra
diff (R9") = x(RY") = Der(F(RY")) we can assign unique vector fiekf on ITTRO",
A straightforward coordinate computatfogives

VI = V(EM) e + (17 Q(VE)) e = VI = 7. (7)

Apartfromthis naturallifting construction, itis also possible to associate t&anyk (RO7)
certain vector field/; on ITTR" such thatV; = V + 1 and

[Vi, 0l = VT ®)
Obviously, the coordinate expression foy is
Vi = V(E*)dye. 9)

For any vector field¥, W € X(R9") itis easy to confirm the validity of supercommutations
relations:

[E,VI]=0, [EV]=-V;, [V, Q]=0,
wvhwli=vwl',  [vp.wl=0  [VI, W] =[V. Wy (10)

The vector fieldV! corresponds to theie derivativeLy (with respect toV) acting on
forms, wherea¥; represents thiaterior productiy (with V). Eq. (8)is the famousCartan
formula

An arbitrary (pseudo)differential form is a polynomial (function) on the supermanifold
TR and therefore it can be expressed in any coordinates as

n

F=FEN =" fapragO) NEL A AES, (11)

ﬁ:Oal,... ,ap

with ordinary real polynomials (functionsf,, ... apg(¥), which are skew-symmetric in the
indicesasy, ... , ag.

Theintegral of the pseudodifferential forryi overR%” is defined as Berezin integral (for
more details sef9,11]) of a function f on [TTR9":

= [ @ (12

It is clear that such integral is not well defined for all elements of the superalgebras
Pol(ITTR") and C**(ITTRY"), because the manifol” (the typical fiber infTTRO")

is not compact. The berezinian of the transformaii@his equal to unity, therefore the
integral(12) is coordinate independent; moreover, the ped-partesintegration formula

(the oddStokes theorepholds:

QN A gl = ~DIU[F A QY] & I[Q(f A 9] =0. (13)
1 In the case of an odd vector field (= 1) it is necessary to consider instead of flow tuperflow(homo-

morphism of the supergrou&!! and Diff(R%")), whose infinitesimal 4+, A€) action in the coordinates is:
EY > E% 4+ AeV(EY) + (At/2)[V, V](&Y), Aeis odd variable.
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An arbitrary supermag : R%" — RO™ defines (in accordance wiil2)) the supermap
@t : TR — TR, The corresponding superalgebra homomorphisim : C*°
(TR — > (IITRY") is thepull-backof the supermag over (pseudo)differential
forms. For the vector fiel#t e X(R%"), which generates the (super)flow (diffeomorphism)
on the supermanifol&®”, the general formula for theull-backreads

exp{tV!} f for V
expleVt + VI, VI]}f for V =

(14)

* O’
e foo=[@0eo(VHI*f = 1

3. Metric and Killing’s vector fields

The metric may be introduced on an arbitrarin-dimensional smooth supermanifold
2 (in particular, on an ordinary manifold) as an even regular (non-degenerate) quadratic
function in fiber variables on a tangent bundi®?. In our casedt = R9" and themetric
has the form:

g =28t 0) = gup® N 0" NP, (15)
where functiong,s(£) = —gg.(£) are even elements OF(ROIM) (roughly speaking, com-
ponents of metric tensor in coordinai&s, . . . , £*)). The non-degeneracy condition reads

|g| == det(gap) # 0. (16)

Letus emphasize that non-degeneracyiafplies that the even skew-symmetric magix
is invertible. Consequently|@-dimensional supermanifol&®” can be Riemannian only if
n is even (this factis strongly reminiscent of the situation in symplectic geometry), therefore
o%rzr?ext analysis will be performed only for pure odd, even-dimensional supermanifolds
ROI2n,

An arbitrary vector fieldV = V(£%)9x € X(RY2") could be vertically lifted from
the base supermanifolti®?" to the tangent bundi&@R%2*: the coordinate expression for
vertically lifted vector field over the tangent bundle is very simple

VTver = V(ga)aﬁa = ‘N/Tver = ‘7 (17)

The metricg on the supermanifol®®?" allows us to define thiner productof vector
fields onRY92" as follows:

(V. Wyg == (1", [Wha (3] = VE) A gup® A WED), (18)

It is clear that for all vector field¥, W, U e X(R"%*) homogeneous with respect to parity
and arbitrary functiory e F(R%2") the following relations are valid:

(V, W), = —(=D)VFDWVD V), odd graded skew-symmetry
(V+1U, W) = (V, W) + f(U, W), gradedf-linearity,
(V, W +1U)g = (V, W), + (=D)Y/ f(V,U),, | gradedf-linearity. (19)
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In the ordinary differential geometry, it is well known, that apart from the vertical lifting
procedure there also exists a canonical horizontal lift of vector field from theR#¥&eto

the tangent bundI@R%?". An arbitrary even [odd] vector fielth = V(£%)3z € X(RO2")
induces an infinitesimal flow [superflow] on the base supermani&8I#'. Such infinites-
imal diffeomorphism ofR%2", in accordance witl{l), generates the (super)flow on the
tangent bundl@ R, Its generator is the vector field:

Vo = V(E) e + [0 (V(E))]dge = VTor = 7. (20)

The origin of the horizontal lifted vector fieldTher € X(TR%?") is the same as the origin
of the vector fieldvt e x(ITTRY%"), which acts ad.ie derivativeon the algebra of
(pseudo)differential forms.

The conformal Killing’s vector fieldon the Riemannian supermanifdkf?" are solu-
tions of the system of(2n — 1) algebraic equations:

xAg=Vr(g) & x A gup = VF(gup) u + (— 1 [0 (V") g — 880 (V) o],
(21)

wherey € F(RY2") is even conformal scaling function ang) ;. = o[ f(§)]. Itis evident
that the linear combination of two conformal Killing’s vector fields is again the conformal
Killing's vector field, and because

v, W]’rhor — [VThor’ WThor],

the supercommutator of two conformal Killing’s vector fields is a generator of conformal
transformation of the supermanifak'2*, too.

Itis possible to show that the Lie superalgebra of pure Killing vector fietds Q) over
RY2" is at a most:(2n + 1)|2n-dimensional subsuperalgebra#?"|n2%"-dimensional
Z»-graded algebra (R%2"). The proof is analogical as in the ordinary differential geometry,
but we do not prove this statement here, because it is not necessary for our next construction
and, moreover, it requires the definition of a new supergeometrical notion, namely, the
exponential (super)mapping.

Letus note thatin analogy with ordinary differential geometry itis possible in supergeom-
etry to define objects, similarly as it was done with metric, which correspond (from ordinary
geometrical point of view) to covariant [contravariant] symmetric and anti-symmetric ten-
sors:covariant[contravariani symmetric tensor fieldf rankk over an arbitrary smooth
supermanifoldJt (in particular, on an ordinary manifolt¥) is defined as the polynomial
function of degreg in fiber variables on the tangent [cotangent] burigi [ 7).

Anti-symmetric covariarjtontravariani tensorqdifferential forms [multivector fields])
are analogically encoded in the polynomials in fiber variables on the odd tangent [odd
cotangent] bundlgTT9n [I1T*97t]. More detailed (but not exhaustive) description of the
tensorial supercalculus on smooth supermanifolds may be found, §g1in13]
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4. Hodges, , operator, integral forms and co-differential

As in the case of ordinary differential forms, the metric is an essential ingredient in the
definition of Hodgex, ,. Because now we are familiar with all its relevant ingredients, we
are able to define this operator.

For the functionf = f(& y) e [C®UTTRY?")]® ((pseudo)differential forms over
RO2%) the Hodgex, , operatoris formally defined by its Fourier transform in the fiber
variablesy”, namely

f _
0 / dz(0v/1g]) A f(E 2) A exp(—12% gapyP), (22)

(*g,of)(gs y) = 27" B2

where the symbo}f denotes the parity with respect to even variables,}i.e; k| mod 2

and the orientation = +1 (because the square root|of is uniquely defined up to sign).

In what follows, to simplify notation, we will pué = 1 and subscript will be omitted. It

is clear that the Hodgs, operator is defined on elements from @orR%27) only in sense

of distributions. Such generalized functions with one point support on the supermanifold
IITRY?" are calledintegral formsover the odd tangent bundle and we denote them as
«(Pol(ITTR?2")). A straightforward calculation shows that the definition of the Hodge star
operator does not dependent on the choice of coordinates. The def{2ifipis strictly
correct only for functions fronC> (ITTR%?") that are behaving well in the variable$

at infinity (e.g. functions with compact support). The basic properties of the Hodge star
operator can be obtained from the definit(@2):

sef=F0 wef=T. Qgh=F+1 QeN=T+1L seeN=(-Df

Similarly, like inthe standard differential geometry, the megramd the DeRham differential
Q define a new operatat, acting on (pseudo)differential forms. This operator, called
co-differentialis defined by equation:

Q) Ao f — Q(h A g f) =2 (=) A 5g(8¢ f). (23)

where functions:, f € C*®(ITTR%?") are homogenous elements with respect to Grass-
mann and fiber variables, respectively. From this definition it follows:
9 alnigl 3 vxi} op O

3elf = (DT e O f = [85_“ R ) T

(24)

whereg®# (&) is inverse to the matrix,g(%), i.e. g** (&) A g,8(6) = 8‘;. All basic proper-

ties of the co-differential on Riemannian supermanif@¥" are given byEq. (24) and

may be deduced from the properties of Hodge star operator and DeRham differential. It is
immediately evident fronf22) and (24that for arbitrary (pseudo)differential forrfiand

any supermag : R92" — RO2” it holds

OV kg fl = %02 (@7 H and @1 [8,(H] = 8@ (@ 1, (25)

where®* g denotes theull-backof the metricg (function over the tangent bundle) with
respect to supermapzd(differential of the supermag).
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The “inner product” of (pseudo)differential forms ov&P?* is a necessary tool for
building a “reasonable” physical theory on such supermanifold; Afare homogenous
elements with respect to Grassmann variables from the supersgau@I'R%27)]®,
then their “inner product” is defined by

(fih)g :=1[f A *gh]. (26)
It is clear that the “inner product’, .), is R-linear and, moreover,

(£h)g = (=DF(h, frg(—=1)7",
0 = (evening, odding),,

(Q(N). By = (=D (£ 85(h))s. 27)
Let us note that theaplace—DeRharnperator defined on (pseudo)differential forms by
Ag = _(Q(Sg + (Sg 0) (28)

is self-adjoint with respect to the “inner produ¢26). We use the name “inner product”
in quotation marks ex industria, to emphasize the peculiar fact that, given by(26), is
not always non-degenerate (e.qg. for the closed even 2-forms over superm&Sifoldth
metricg = eqp A 0 AdP itholds(., .), = 0).

5. Grassmann electrodynamics

The symplectic mechanics and classical electrodynamics are undoubtedly nice and simple
applications of differential geometry in classical physics. The Grassmann electrodynamicsis
a natural “grassmannisation” of the well known version of ordinary even electrodynamics to
the odd one. The inspiration for such a bit extravagant theory is provided by Cartan calculus
on a pure odd Riemannian supermanif®i®?’ and by the geometrical formulation of
classical electrodynamics (see e.g., interesting monogfaghis], or the textbooK16]).

The electromagnetic field on the supermanifBf#” (“Grassmann space-time”) is de-
scribed by thepotential1-form:

A=AGY) = A = A &, where 4@ e [\R”] . (29)

Since the space of all odd potential 1-forms on the supermarif®# is finite-dimensional,

dim([PoI(HTRO‘Z”)]Ell])) = n2%", the “Grassmann electromagnetism” possesses only finite
number of degrees of freedom.
The closectlectrodynamic®-form:

F = Q(A) & [Pol(rTTRY?")] @ (30)
is invariant under thgauge transformations

A A'= A+ Q(f), where f € [/\RZ”] (31)

[0
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Externals sources in such theory are described bguhent1-form:

J=JEY) = Tu(®)" = To(®ds,  where To(©) € [ Rz"]m : (32)

The dynamics of th&rassmann electromagnetic fieklgoverned by the action:
S[A, J, g i= =3(Q(A), Q(A))g + (. A)g. (33)

which is a functional (strictly speaking only a function, because the Grassmann electrody-
namics has finite number of degrees of freedom) of the potential and current 1Aa@nts

J and also of the metric tensgr Variation of the actior§33) with respect to the potential
(without any boundary condition) leads (in the case when, is regular “inner product”

over the space of 1-forms) to the set of algeb@Giassmann—Maxwell equatignshich

can be written in a compact form as

SgF = —J. (34)

The Grassmann—Maxwell equations are internally consistent only if the current 1/form
is co-closed, i.e. if

8¢J =0 Q(x,J) = 0. (35)

This is thecontinuity equatiorior the external currents.

To bring this extravagancy to the top of its bent, we split coordinates covering “Grassmann
space-time'R%2" = ROI2—1) g RO tg the “space” coordinates, ... , £2*~1) and the
“time” coordinate £ = 7). We restrict the closed integral forgJ € *(Pol(ITTR%?"))
to the “space” hyper-surfa@®(?*—D TheGrassmann chargeelated to external sources is
then defined as an integral of the restricted fo#V) |z2._, y_ OVer “Grassmann space”

subsupermanifol®°@ =1 namely

=T,y

= g (*¢J) |52n:ny2n=0].
§21=7,y21=0

Qar(v) = / dg / dy (kgD (&, ¥)
AR2-1 R2n-1
(36)

The odd vector field = 3, defines a corresponding “Grassmann time” evolution. Itis clear
from Egs. (7), (8) and (3%hat

Torgd) = T (xg)) = Q[Th(xg D] + THQ kg N] = QU Th (g D]
Last equation and the odgtokes theorerfl3) imply that

ad
0= —Is QT Geg)lgor =g y2r—0)] = = Tl Geg D)l gon—g yr o)) = (a?rG g

(37)

Let us remark that similarly as in the ordinary electromagnetism, it is possible to fix gauge
freedom (of electromagnetic 2-fori) by imposing the condition:

8,A =0. (38)
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This Lorentz gauge conditiodoes not define the functiofi in the gauge transformation
(31) uniquely. Let us note that this uncertainty in the choice of the gauge fixing function
f is similar as in the ordinary electrodynamics: to any solution of the Poisson equation
A, f = 8,A, whichdetermineg, itis always possible to add a solution of the homogeneous
(Laplace) equation. To eliminate this ambiguity in the ordinary electromagnegism=
nap. 1.€. IN (3 + 1)-Minkowski space-time), we need to fix the boundary conditions for the
gauge fixing functiory (usually f(x) — 0 forx — o), because then the Poisson equation
A, f = 8,A has unique solutich

Unfortunately, this does not work in the case of the Grassmann electrodynamics, where the
boundary condition could be most naturally established by requirement that(®)|:—o
(the absolute term iry does not contribute to gauge transformat{8d)). The problem
consists in an unpleasant fact thatlttaplace—DeRham operatoestricted to the functions:

Aof =38, Q(f)_i aﬁi_aln—m aﬂﬁ

e 9B T T ggw O oeP (39)

is not invertible. This peculiar fact has a serious consequence: it is not possible to quantize
the Grassmann—Maxwell theory by using Faddeev—Popov method in a straightforward
way, because after applying gauge fixing condit{d88) there still remains relative “rich”
gauge freedom, which is represented by the subgroup\KeSimilar problems arise also
with another gauge fixing conditions, eg'.4,(§) = 0 (radial gaugg or A»,(§) = 0
(Hamiltonian gauggand therefore the problem of the quantization will not be discussed
in this paper. The reason is down-to-earth, needs an individual approach from the case to
case.

The Grassmann—Maxwedlquations (34tould be rewritten in Lorentz gaud@8) in
the form:

AgA = J. (40)

Now, let us consider the case of a free electromagnetic field Q). The variation of the
action(33) with respect to the metrig

S[A, g + Ath] = S[A, g] — At Téhaﬁ<s>T”ﬂ<s> + o(AD), (41)

whereAthis the perturbation of metrie\z is an infinitesimal real parameter) W
is invariant Berezin integral measure, defines the covariant tensor field (a quadratic function
in the fiber variables of the tangent bundle):

T =T 0) = Tup(§) Ao AcP,  where Ty := gaugp T (42)
It is the energy-momentum tensof the free Grassmann electromagnetic field. It is clear

from definitionequation (41)hat in the energy-momentum tengoonly the skew-symmetric

2 Let us note that this statement is not true for the general Riemannian ma@iolg, since the solution of
the Poisson equation in particular physical situations constitutes a serious problem of mathematical physics.
3 Sometimes called as theplace—Beltrami operator
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part is uniquely fixed (contrary to standard electrodynamics, where the same is true of the
symmetric part). Namely,

! __}/ / dy e = | gl{gup + I( - VHF(E, y) A F(E 2)}e < 8w,
af = 2 Joon oo 2y 8h8ep ZaYB — 2BV y <
wherez, = gou 2" andyg = ggoy”.

The energy-momentum tensor is a fundamental physical object that enables us to con-
struct preserving quantities, which correspond to the space-time symmetries associated with
(conformal) Killing's vector fields. Our next steps will be more general and final results
could be automatically applied to Grassmann electrodynamics discussed above.

Consider now an arbitrary field (function, 1-form, tensor field, etc.) over the superman-
ifold R92" with fixed metricg. Let us assume that the dynamics of the figlis governed
by the action:

ST 5] = [ r[mp G 43)
which is natural with respect to diffeomorphisms, i.e.
D" (L(Y, 8) = L(@*(¥), P*(8)) (44)

for any @ e Diff (R92"). If vV € X(R%?") is an arbitrary even vector field, defines the
infinitesimal flowa », (V) on the Riemannian supermanif@32’. The associated horizon-

tally lifted even vector fieldg/T, vthor . generate the corresponding flows,, (V')

over supermanifoldg7TRY2, TR2", .. and consequently thpill-backs®* (V') over

forms, symmetric covariant tensors fields and so on. Since the berezinians of all such lifted
flow-transformations are identically equal to unity and because the getB)ris natural

with respect to supergroup DifR%2"), we could write

Sy, g] = S[@%, (V) (W), R, (V) (g)]
= S[y + AV (y) + o(A1), g + AtV (g) 4 0(AD)].

If the field v is the solution of the dynamical equations, 88/8y = 0, previous equation
implies that

/ di 1 Z (Vo) s T, where T (&) = —2\/> SIY: ]
A

45
wor Vgl 2 w®

Explicit coordinate expressiof20) for the horizontal liftVTher (V is even) allows us to
write

. 1 (gup) u T (g,mT“ﬂ) (vug,mraﬂ)
- VThor T — —yHr|Z M _ _ . 46
( 8)as [2 N gl Ja ), @9

SinceEq. (45)is valid for all even vector field¥ e X(RY2") (componentd/* (&) = V(&")
are odd functions andl d¢() s = 0), we conclude that
}(gaﬂ),uTaﬂ _ (g,uotTaﬂ>
2 Vgl Vgl

Il
©

.. 65
v SatISerS@ =0=> (47)
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This equation is a compact formulationeadnservation lawsbecause from ordinary point
of view, Eq. (47)is equivalent to the statement ti@*#). ; = 0. Now, it becomes clear that
for an arbitrary Killing’s vector field/ e X (R%?") (the generator of an isometry BFf'2")
the 1-form:

Ty = Ty Y) = Vi (Tup®) A 0% A 0P)|osy (48)

is co-closed, i.eQ (x,Tyv) = 0 (occasionally we are using metric to raise and lower indices,
in order to make our final formulae more compact). If morecT(ér: 0, the same is true
for the arbitrary conformal Killing’s vector field and therefore the quantity:

Qv (1) 1= Isd (¢ Tv) 521 =1 y21—0] (49)

is an integral of motion (i.e3;[Qv (7)] = 0) andTy is correspondingsrassmann-Noether
currentassociated to the (conformal) Killing’s vector figlle X (R%2"). The proof of this
assertion is the same as for tBeassmann charg®g, discussed above.

6. Connection and Grassmann general relativity

In this section we shall try to uncover the Grassmann analogy of the Einstein’s theory of
general relativity. We shall derive equations, which will govern the dynamics of the metric on
the pure odd Riemannian supermanifdk?2”, ¢), but before this we are forced to establish
a necessary supermathematical tool, namely the linear connection. The inspiration for such
“monstrosity” comes from the standard general relativity (see[@%18] and from the
supergeometry discussed above.

We start with the definition of thHenear connectiorfthe quintessence of general relativity)
on functions and vector fields for the general (not necessary Riemannian) pure odd super-
manifolds. Connection (covariant derivatiVewith respect to vector field e x(R"))
over functionsF(R9") is trivial: we require (analogically as in the ordinary case) that
Vy f := Vf. Connection over vector fields is the operation:

Vi (X®RY)2 5 xR, (V, W) > Vy W, (50)

which in addition for arbitrary vector fieldg W, U € X(R%") and functionf € F(R")
(all this objects are considered here and below as homogenous elements with respect to
parity) satisfies:

VoW =V + W,
VyiuW = VyW + fVy W,
Vy(W +fU) = Vy W + (VHU + (-1 fvyU. (51)

It is clear that the full information about connecti®hon supermanifold®9” is uniquely

encoded inta3 Christoffel symbols (odd function ;}, = (Vi3 96 (87), ie. F;’ﬂ(g) are

components of the vector fiemasﬂ dge With respect to coordinates franggl, ... , €"). If
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% — EY(&), thenI’s transform as

D5 o5 08' ., 0 08" 9 (937
9~ 9B« 9gP M 9Ee 9EF pgr \ dgv )

v _
Fﬂ_

[07

In the same spirit as in the case of ordinary connectiontgitsionassociated to connection
V is the (super)tensorial (i.e. graded skew-symmetric and grgdmdiltilinear) operation
Ty defined by

Ty : (XRI")? — xR,
(V. W) > To(V. W) == VyW — (=1)V Vv, v — [V, W]. (52)

Let us note thafy (9ge, 0gp) = (I“OZ3 + Fga)agy = Ty (0gp, Ogv) and therefore the torsion

vanishes identically only in the case, when the connecdiam the supermanifol®°” is
anti-symmetric, i.el, = — I,

The curvature tensorRy assigned to the connection is naturally defined as the su-
permap:

Ry : (X(RY)3 — xR,
(V, W, U) = Ry (V, W, U) := [Vy, Vw]U — Vv U, (53)

where Vy, Vy] = Vy Vy — (—1)‘7‘7"VWVV. Obvious coordinate expression for the cur-
vature tensoRy is

Ry (B¢, 0gv, 9gp) = R, 060 = {(Tg) 0 + (Tg) = I}, Iy, — T3, Y. (54)

Apart from the basic properties of the torsifg and curvatureRy, which have arisen as
straightforward consequences of their definitions, one also obtains two useful and powerful
identities, namely th&icci identity

> DVYR(V. W, U) = Yy (Tg (W, ) = To (V. [W, U]} = 0 (55)

cycl. permut

and theBianchi identity

> ~DYY{[Yy. Ry(W. U. )] + Ry (V.[W, U], )} = O. (56)

cycl. permut

The proof of these assertions is not difficult, it is mainly a technical matter, which needs
patience, large sheet of paper and knowledge about the (super)Jacobi identity stating that
(=1)VYV, [W, U]] + cycl. permut = 0 for anyV, W, U € X (R%").

On the odd Riemannian supermanif@l&®?", ) it is possible to require, analogically
as in the ordinary case, the compatibility between conneé&tiand metricg, which means
that for arbitrary vector field®, W, U onRR%2" it should holds

Yy (W, U)g = (Vy W, U)g + (1" VD W, vyu),. (57)
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As was mentioned above, the connectionan be uniquely defined k2x)2 odd functions
(I'), compatibility condition(57) gives 21%(2n — 1)-secondary constrains on the Christoffel
symbols:

(gaﬂ),y = gotur/;, - gﬂurolfy-

But there still remains2*(2n + 1)-degrees of freedom for the Christoff€ls, the residual
ambiguity could be eliminated by requirement that connectiawithout torsion {y = 0)

or equivalently tha¥ is anti-symmetric. The final expression for the Christoffel symbols
related to themetric and anti-symmetric connectidhis very simple, and similar to the
ordinary one. Namely,

Il = 58" 1(8ue).p — (8up).a — (8up).ul = 8" Thuap- (58)
The pure metricity of the connection (in principle Ty # 0) implies that
(Ry(V. WX, Y)g = (- )T VT (Ro (v, WY, X),, (59)

the last equation together with anti-symmetryofeveal another interesting symmetry of
the supermaRy:

(Ry(V. WX, V)o(~1)7 = (=) TTWED Ry (X, )V, W) (—1)W. (60)

The proof of these identities is very simple and it is primarily based on the fact that for any
function f € Z(RY2") it holds [Vv, Vwlf — Viv.w) f = 0. The choicef = (X, Y), gives

(59). The statemen(60)is just a consequence of previous one together with Ricci identity
without torsion terms.

Henceforth, we work only with th&rassmann—Levi—Civitd, which is torsionless and
compatible with metrig. In such case, it is evident that the curvature terggnover the
Riemannian supermanifol@®®?*, g) has only(n2/3)[4n? — 1] + n[4n? + 1] independent
componentsky , which is indeed more than in ordinary case for the same dimension.

Now we are able to describe the gravity BA?". The free dynamics of the metricis
governed by th&rassmann—Hilbert actian

dg

Se— = —TR, 61
o-nleli= | (61)
where theRicci scalarR is defined by

R =P Ry 5 = &Ny + (T 5 — Taply, — Tun Tig)- (62)

The firsttwo terms in the actiq61)can be simplified bper-partesntegration (f d&( ) =
0). After such treatment we obtain more convenient expression, namely

dé
Sc—nlgl = h Py O + Ty, T, 63
6-nlgl //\RZI JEQ where G = g™ { I, T, ig)- (63)
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The variation of(63) with respect to the metrig (without any boundary conditions, foras-
much as the surface terms do not contribute) leads to the system of algebraic equations:

A I A )

=0, (64)
agotﬁ oEH a(gotﬂ),u

which dictates the evolution of the free gravitational field. It is always possible to add to
the Grassmann—Hilberaction a mater term of the forif#3), and then the variation of
Sc—nlgl + Smatel ¥, g] with respect tog, gives theGrassmann—Einstein equations

1 -1
01e719) 9 | 3/1g119) _1 lg~ 1T, (65)
gup N 2

whereT*# is the energy-momentum tendd) related with the mater fields.
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